
InvalidRoutesReporter Documentation
Release latest

Pier Carlo Chiodi

Jun 30, 2017

Contents

1 Installation 3

2 How it works 5

3 Usage 7

4 Configuration 9
4.1 Networks configuration file . 9
4.2 Alerter configuration file . 9
4.3 Automatically generating configs from ARouteServer . 12

5 Integration with ARouteServer 15

6 Status 19

7 Author 21

i

ii

InvalidRoutesReporter Documentation, Release latest

This script is intended to be used as an ExaBGP process to elaborate and report/log invalid routes that have been tagged
with meaningful dedicated BGP communities by route servers.

Invalid routes are those routes that, for some reason, didn’t pass the route server’s validation process (invalid/private
ASNs in the AS_PATH, bogon prefixes, invalid NEXT_HOP, IRRDBs data mismatch, ...). Route servers, instead of
discarding them, can keep these routes and tag them with a BGP community that describes the reason for which they
have been considered as invalid.

A session with an ExaBGP-based route collector can be used to announce these invalid routes to this script, that finally
processes them, extracts the reject reason and uses this information to log a record or to send an email alert to the
involved networks.

If deployed in conjunction with ARouteServer, the “tag” reject policy option can be used to easily setup the route
server to work together with this script.

Contents 1

https://github.com/Exa-Networks/exabgp
https://github.com/pierky/arouteserver
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy

InvalidRoutesReporter Documentation, Release latest

2 Contents

CHAPTER 1

Installation

This script has no external dependencies, so it can be fetched from GitHub or installed using pip:

$ # download the script from GitHub, then run it...
$ curl -O -L https://raw.githubusercontent.com/pierky/invalidroutesreporter/master/
→˓scripts/invalidroutesreporter.py
$./invalidroutesreporter.py --help
$
$ # ... or install it using pip
$ pip install invalidroutesreporter
$ invalidroutesreporter.py --help

3

InvalidRoutesReporter Documentation, Release latest

4 Chapter 1. Installation

CHAPTER 2

How it works

The script is supposed to be executed by ExaBGP in order to receive and process routes that route servers announce
to it.

Three BGP communities are used to determine:

1. if the routes it receives are considered as invalid (reject-community),

2. optionally, the reason that led these routes to be considered so (reject-reason-community),

3. optionally, the ASN of the peer that actually announced the routes (rejected-route-announced-by-community).

In particular, the rejected-route-announced-by-community is supposed to be added by the route server on the basis of
the BGP session it has toward every client and to be set with the ASN of the peer.

All these BGP communities can be configured by the user: the first one must be given in a straight form (example:
65520:0) while the other ones need to be set using a regular expression pattern that matches, respectively, the
reason code (example: ^65520:(\d+)$) and the ASN of the network that announced the invalid routes (example:
^rt:65520:(\d+)$). Since the matching is done on a textual representation basis, standard, extended and large
BGP communities can be used indiscriminately.

Example:

• reject-community: 65520:0

• reject-reason-community: ^65520:(\d+)$

• rejected-route-announced-by-community: ^rt:65520:(\d+)$

• route tagged with: 65520:0, 65520:7, rt:65520:666

• resulting reason code: 7 (that, in ARouteServer, it means “Invalid ASN in AS_PATH”)

• resulting peer ASN: 666

So...

1. The script looks for the reject-community to determine if the route it received from the route servers is considered
as invalid.

5

https://github.com/pierky/arouteserver

InvalidRoutesReporter Documentation, Release latest

2. If the reject-community is found and a reject-reason-community has been configured it extracts the reject reason
code from the route.

If used in conjunction with ARouteServer, the list of codes and their meaning is reported within the Reject
policy and invalid routes tracking section of ARouteServer’s docs.

3. Unless the --peer-asn-only command line option has been given, for those routes that are tagged with a
reject-community the script performs a lookup on a list of networks in search of 1) the left-most ASN in the
AS_PATH attribute and 2) the IP address used in the NEXT_HOP attribute. The result of this lookup identifies
the recipients of the alert that will be generated.

Note: Please note that this lookup’s result does not always determine the real network that announced the
invalid route: for example, in case of a network that announces a route with an unauthorized left-most ASN
or NEXT_HOP address the result of the lookup will be the networks of which the ASN and the peer’s address
have been used. Here the rejected-route-announced-by-community can help to determine the actual network that
announced the route (see the next bullet).

Example of the networks list:

{
"AS1": {

"neighbors": ["192.0.2.11", "2001:db8:1:1::11", "192.0.2.12",
→˓"2001:db8:1:1::12"]
},
"AS2": {

"neighbors": ["192.0.2.21", "2001:db8:1:1::21"]
},
"AS3": {

"neighbors": ["192.0.2.31", "2001:db8:1:1::31"]
},
"AS23" : {
"neighbors": ["192.0.2.23"]

}
}

4. If the rejected-route-announced-by-community is configured, the script also tries to extract the peer ASN from
the communities attached to the route. If an ASN is found and it is also present in the networks list it is added
to the recipients of the alert.

5. For each involved network (recipients), the invalid routes collected by the script are added to a buffer; finally,
the script triggers some actions on the basis of the alerters that have been configured. It can send an email or
simply log the route on a file.

In order to convert numeric reject reason codes into a textual description the --reject-reasons-file command
line argument must be used to provide a JSON file containing the conversion matrix:

{
"1": "Invalid AS_PATH length",
"2": "Prefix is bogon",
"3": "Prefix is in global blacklist",

...

The reason code/description matrix used by ARouteServer is provided within the example/
arouteserver_reject_reasons.json file.

6 Chapter 2. How it works

https://github.com/pierky/arouteserver
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy
https://github.com/pierky/arouteserver

CHAPTER 3

Usage

The script must be executed as an ExaBGP process configured to receive JSON parsed update messages. The first
mandatory argument is the path to the networks configuration file; then, one or more alerter configuration files must
be supplied. The default BGP communities values are 65520:0 for the reject-community and ^65520:(\d+)$ for
the reject reason community: to set them, the --reject-community and the --reject-reason-pattern
command line arguments can be used. The --rejected-route-announced-by-pattern argument
can be used to configure the rejected-route-announced-by-community pattern. For more options run ./
invalidroutesreporter.py --help.

An ExaBGP configuration example follows:

neighbor 192.0.2.2 {
[...]

process invalid_routes_reporter {
run /etc/exabgp/invalidroutesreporter.py /etc/exabgp/networks.json /

→˓etc/exabgp/log.alerter.json /etc/exabgp/email.alerter.json;
encoder json;
receive {

update;
parsed;

}
}

}

7

InvalidRoutesReporter Documentation, Release latest

8 Chapter 3. Usage

CHAPTER 4

Configuration

Note: The configuration files used by this script can be automatically generated starting from the clients.yml
file used by ARouteServer to build configuration for the route server. This topic is further expanded in the rest of the
document.

Details about the configuration of this script follow. An example can be found within the example directory on GitHub.

Networks configuration file

This is a JSON file containing the list of ASNs and their peers IP addresses.

{
"AS1": {
"neighbors": ["192.0.2.11", "2001:db8:1:1::11", "192.0.2.12", "2001:db8:1:1::12"]

},
...

}

Alerter configuration file

Alerters are also configured using JSON files. There are more kinds of alerters that implement different actions, but
they share a common set of configuration options:

{
"type": "ALERTER_TYPE",

// The following settings are ment to be interpreted on a
// recipient-by-recipient basis. Global values can be configured
// here and they are then inherited by recipients, but each

9

https://github.com/pierky/arouteserver
https://github.com/pierky/invalidroutesreporter/tree/master/example

InvalidRoutesReporter Documentation, Release latest

// recipient can also be configured with its own values.

// Optional.
// Do not perform any action if the last one has been performed
// less than "min_wait" seconds ago.
"min_wait": 300,

// Optional.
// It is the max number of routes that will be buffered for each
// recipient.
// When this buffer is full, perform the action implemented by
// the alerter, unless the "min_wait" timer has not expired.
// If the "min_wait" timer is not expired and the buffer is full,
// any further route will not be buffered and will be lost.
"max_routes": 30,

// Optional.
// Even if the number of buffered routes is less than "max_routes",
// perform the action if the last one has been performed more than
// "max_wait" seconds ago.
"max_wait": 900,

"recipients": {

// Recipient ID must be given in the format "AS<n>" and must
// match the ASN reported in the networks configuration file.
"recipient ID": {

// Optional.
// Recipients inherit settings from the general configuration
// above, or they may have their own settings configured here.
//"max_routes": 30,
//"max_wait": 900,
//"min_wait": 300,

// Optional.
// The "info" section is used by specific alerters; its
// content depends on the alerters needs.
"info": {
}

},

// Optional.
// The wildcard recipient ID "*" matches for any route that is
// processed by the script.
"*": {
}

}
}

Depending on the value of ALERTER_TYPE, the following alerters can be configured:

• log: invalid routes are logged into a file.

The following configuration options are used for this kind of alerter.

{
"type": "log",

10 Chapter 4. Configuration

InvalidRoutesReporter Documentation, Release latest

"path": "path to the log file",

// Optional.
// If True, routes will be appended to the log file, otherwise
// the log file will be overwritten every time the process is
// started.
"append": False,

// Optional.
// This is the template used to make the lines that will be
// logged.
// Available macros:
// - id: the recipient ID
// - ts: the timestamp the route is received by the script,
// seconds since epoch
// - ts_iso8601: as above, in ISO 8601 format
// - prefix, next_hop, as_path: route's attributes
// - reject_reason_code: the code of the reason for which the
// route has been considered as invalid by the route server
// - reject_reason: the description of the reject_reason_code
// - announced_by: the ASN of the peer that announced the route
"template": "{id},{ts},{prefix},{as_path},{next_hop},{reject_reason_code},

→˓{reject_reason},{announced_by}"
}

• email: an email is sent to the recipients previously identified during the lookup.

The following configuration options are used for this kind of alerter.

{
"type": "email",

"host": "smtp server address",

// Optional.
"port": 25,

"from_addr": "noc@acme-ix.net",

// Optional.
"subject": "Bad routes received!",

// Path to a file that contains the template that will be used
// to build the body of the email message.
// Available macros:
// - id: the recipient ID
// - from_addr: the "from_addr" option
// - subject: the "subject" option
// - routes_list: the list of routes that have been buffered,
// in the following format:
// prefix: xxx
// - AS_PATH: xxx
// - NEXT_HOP: xxx
// - reject reason: xxx
// - announced by: xxx
"template_file": "path to the template file used for the body",

// Optional.

4.2. Alerter configuration file 11

InvalidRoutesReporter Documentation, Release latest

"username": "SMTP username",
"password": "SMTP password",

"recipients": {
"recipient ID": {

"info": {
// Email addresses used to send messages to this
// recipient.
"email": ["email1", "email2"]

}
}

}
}

Automatically generating configs from ARouteServer

The build_networks_config_from_arouteserver.py script can be used to automatically build networks
and alerters configuration files starting from the clients.yml file used by ARouteServer. To run it, the PyYAML
package must be installed on the system: pip install PyYAML.

Email addresses needed by the email alerter can be also automatically gathered from PeeringDB.

The usage of this script is pretty straightforward: please use the --help for details about the arguments it needs.

Examples:

$./build_networks_config_from_arouteserver.py examples/rich/clients.yml
{

"AS10745": {
"neighbors": [

"192.0.2.22",
"2001:db:1:1::22"

]
},
"AS3333": {
"neighbors": [

"192.0.2.11"
]

}
}

$./build_networks_config_from_arouteserver.py examples/rich/clients.yml \
> --networks ~/invalid_routes_collector/networks.json \
> --email ~/invalid_routes_collector/email.alerter.json \
> --fetch-email-from-peeringdb
Fetching contacts from PeeringDB: AS10745...
Fetching contacts from PeeringDB: AS3333...
$ cat ~/invalid_routes_collector/email.alerter.json
{

"host": "smtp_server_address",
"type": "email",
"recipients": {
"AS10745": {

"info": {
"email": [
"ganderson@arin.net"

12 Chapter 4. Configuration

https://github.com/pierky/arouteserver

InvalidRoutesReporter Documentation, Release latest

]
}

},
"AS3333": {

"info": {
"email": []

}
}

},
"template_file": "/etc/exabgp/template",
"from_addr": "noc@acme-ix.net"

}

4.3. Automatically generating configs from ARouteServer 13

InvalidRoutesReporter Documentation, Release latest

14 Chapter 4. Configuration

CHAPTER 5

Integration with ARouteServer

• In order to have the route server announcing invalid routes to invalidroutesreporter, ARouteServer is
set to use the “tag” reject policy option and a .local site-specific file where the session to ExaBGP is configured.

– ARouteServer general.yml configuration file:

cfg:
[...]
filtering:
reject_policy:
policy: tag

[...]
communities:
reject_cause:
std: 65520:dyn_val

rejected_route_announced_by:
ext: rt:65520:dyn_val

– Content of /etc/bird/footer4.local on the route server:

filter invalid_routes_only {
if ((65520, 0) ~ bgp_community) then

accept;
reject;

}
protocol bgp InvalidRoutesCollector {

local as 999;
neighbor 192.0.2.99 as 65534;
rs client;
add paths tx;
secondary;

import none;
export filter invalid_routes_only;

}

15

https://github.com/pierky/arouteserver
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#reject-policy
https://arouteserver.readthedocs.io/en/latest/CONFIG.html#site-specific-custom-config

InvalidRoutesReporter Documentation, Release latest

– Command to build the route server’s configuration:

$ arouteserver bird --ip-ver 4 --use-local-files footer4

• The ExaBGP side is configured with a session to the route server and a process that executes the
invalidroutesreporter script:

– content of exabgp.conf:

neighbor 192.0.2.2 {
router-id 192.0.2.99;
local-address 192.0.2.99;
local-as 65534;
peer-as 999;
group-updates false;
add-path receive;

family {
ipv4 unicast;
ipv6 unicast;

}

process invalid_routes_reporter {
run /etc/exabgp/invalidroutesreporter.sh;
encoder json;
receive {

update;
parsed;

}
}

}

– content of invalidroutesreporter.sh:

#!/bin/sh
cd /etc/exabgp
./invalidroutesreporter.py \

networks.json \
log.alerter.json \
email.alerter.json \
--reject-reasons-file arouteserver_reject_reasons.json \
--rejected-route-announced-by-pattern '^rt:65520:(\d+)$'

An integration diagram follows (click to enlarge).

16 Chapter 5. Integration with ARouteServer

InvalidRoutesReporter Documentation, Release latest

17

InvalidRoutesReporter Documentation, Release latest

18 Chapter 5. Integration with ARouteServer

CHAPTER 6

Status

Currently this tool is in a beta status and needs testing. Please consider this before using it in production!

19

InvalidRoutesReporter Documentation, Release latest

20 Chapter 6. Status

CHAPTER 7

Author

Pier Carlo Chiodi - https://pierky.com

Blog: https://blog.pierky.com Twitter: @pierky

21

https://pierky.com
https://blog.pierky.com
https://twitter.com/pierky

	Installation
	How it works
	Usage
	Configuration
	Networks configuration file
	Alerter configuration file
	Automatically generating configs from ARouteServer

	Integration with ARouteServer
	Status
	Author

